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A line source on an interface between two media 

By V. M. PAPADOPOULOS 
Division of Engineering, Brown University 

(Received 20 August 1959) 

The assumption of dynamic Similarity is used to determine the velocity potential 
of an unsteady line source which lies on a plane separating two media of different 
density and sound velocity. The solution first derived is for a source whose 
strength varies with time as a step function; the pressure in this case may be 
identified with Hadamard’s elementary solution which in a homogeneous fluid is 
( c / 2 ~ )  (c2t2 - r2)-fr if r < ct, and 0 if r > ct. We next derive the solution for a source 
whose strength has a delta-function time dependence; we then describe the 
results for a supersonic point source moving on the interface, and finally we 
transfer the results to solve the corresponding electromagnetic problem. 

1. Introduction 
In  some recent work Craggs (1956, 1957) and Papadopoulos (1959a, 19596) 

have shown the value of the assumption of dynamic similarity in the solution of 
a number of unsteady two-dimensional problems in various physical situations. 
In each caae the unknown quantity satisfies the wave equation. 

In  this paper we shall determine the nature of the field of a uniform line source 
which is suddenly set up a t  some definite moment on the plane interface between 
two different homogeneous fluids. We assume a linearized equation of state, and 
that the source is weak enough for the acoustic approximation to be valid. We 
take the source to be at the origin r = 0, and we take the time t = 0 to be the 
moment at which the source is made active. Under the assumption that the 
subsequent unsteady motion is irrotational, it is well known (e.g. see Priedlander 
1958) that the velocity potential satisfies the wave equation 

_______ - 

V2$(r, 8, t)  = C-2(a2$/at2), 

where c is the velocity of sound in the medium at rest, while the pressure change 
p and the particle velocity q satisfy the equations 

p = a$/at, pg = -q. (1) 

Here p refers to the constant density in an undisturbed medium. 
Within a single uniform medium, it is known (e.g. see Lamb 1932) that the 

potential of a line source of uniform density U ( t )  (U( t )  = 0 if t < 0, U(t) = 1 if 
t > 0) is (1/2n) sech-l(r/ct); it  is clear from this result that it  is reasonable to 
assume in the present problem that the velocity potential depends only on two 
variables s ( = r / t )  and 8. This is the assumption of dynamic similarity. It may be 
added that the pressure corresponding to the above potential is identical with 
Hadamard’s elementary solution (1923) of the wave equation in two dimensions. 
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Suppose now that some quantity S(s,8) satisfies the wave equation in the 
variables (r, 8, t ) .  Then since s = r / t  it  follows that 8 must satisfy the equation 

If s > c,  the equation is hyperbolic. Put s = c sec u, so that 

azs  a w  
202 au2 - '3 

- - - (3) 

and s = f (u-e)+g(u+e) ,  (4) 

where f and g are arbitrary functions, and the lines on which u + 8 and u - 0 are 
constant are characteristic lines tangent to the circle s = c .  If s < c,  equation (2) 
is elliptic. Put s = c sech ( - v), so that 

( 5 )  
a2x azs 
aez av2 
-- +- = 0. 

It follows from equation (5) that with the harmonic function S in the elliptic 
region we may introduce a conjugate T(v, O ) ,  so that W = S + iT is an analytic 
function, and such that 

(6) 
as aT as aT 
av ao' ae av . 

- _ _ _ -  - 

In  92 the detailed solution of the acoustic problem is given. In  3 5 we describe the 
change to be made to give the results relevant in the setting up of a charged line 
or of a line current. 

Medium 

Elliptic region 

Medium 2 

Figure 1. The elliptic regions in the (5, @-plane. 

2. A line source of step function time dependence 
In  figure 1 we depict the physical situation in the (s, @-plane. The upper half 

of this plane, 0 < 0 < n-, represents the region occupied by a medium 1, and the 
lower half, 0 > 0 > - T ,  that occupied by a medium 2 .  The respective density p 
and sound velocity c are distinguished by the suffix 1 or 2 where appropriate. 
We assume that c1 > c2. The semicircles s = cl, s = c2 separate the elliptic and the 
hyperbolic regions in each medium. 
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There are two requirements on the solution of our problem. The first is that the 
solution of the steady problem shall be approached in the limit as s --f 0 (i.e. as 
t --f a). The second is that at the interface both the pressure and the normal 
component of velocity shall be continuous. 

Suppose that the quantity S and the velocity potential are related by the 
equation pc2S = $. From equations (1)  it follows that the radial and transverse 
components (qT, qQ) of the velocity, and the pressure changep, satisfy the equations 

J 
(7 )  

Putting m = c2/c1, k = p2/p1, then we may write the continuity conditions in the 
form 

and (9) 

We may refer again to figure 1 to discuss some of the properties of the 
solution. In  the hyperbolic region, it is clear that the value of S as s+co 
corresponds to the initial value of S. Hence S is uniformly zero at  infinity for 
all values of 8, and from the nature of the solution (4) it  follows that the value of 
S is everywhere zero outside the region AFDE. Within the triangle CDG the 
solution is necessarily of the form S, = f (u-O), and in the triangle ABH the 
solution must be of the form S, = g(u+@),  where f and g are functions to be 
determined. The solution must be symmetric about the vertical axis in figure 1 ; 
hence we need only examine the field in the right-hand half of the (8, @-plane. 

Consider the region s < c,, 0 6 8 6 8n. In  this region we have that (i) the line 
OE is a line of symmetry on which aSl/ae = 0. The arc ED, which is the envelope 
of the characteristics in the hyperbolic region, is itself a characteristic. Across this 
arc the pressure and the radial velocity will be discontinuous. The tangential 
velocity component must be continuous, however, so that (ii) aSl/a8 = 0 on ED. 

The continuity of pressure and of normal velocity across the interface CD 
implies that on CD 

Thus 

so that 

On physical grounds we may expect singularities in W, only at the points 
0, G, D, E .  The first quadrant in the circle in the (s, @-plane corresponds to a semi- 
infinite strip in the complex (v,, 8)-plane and under the transformation 

= .&+iq, = sech(vl+i8) 
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we may map this strip conformally into the upper half of the complex C1-plane. 
The conditions just enumerated are that 

(i) singularities are to be expected only at  the points Cl = 0 m, 1 and co; 
(ii) aW1/3Cl is imaginary, for cl = 0 ql > 0; 
(iii) 2Wl/3Cl is imaginary, for ql = 0 lcll > 1;  and 
(iv) for v1 = 0, m < El < 1, 

where R(Cl) is a function which must take real values on this segment of the real 
axis. Since s = cl, 8 = +7r is an ordinary point both for S and for aSla8, it follows 
that as lcl;ll+m, 

-+ 0, the field must approach the 
steady state value, and therefore 

(v) 3Wl/aCl = O(c~:,-2-8) with 6 > 0. As 

(vi) aWl/3Cl = O(cil )  for Q -+ 0. 
Thus, after applying these conditions, we may write 

it being implied that F(cl) is bounded as l ~ l ~ - + w ,  is real on the positive real 
axis for .& > m, and is real on the imaginary axis. This final condition implies that 
F must be an even function of el. 

Whatever may be the formula for F(Cl) which we shall determine, we must, in 
setting up the solution for medium 2, satisfy the continuity conditions across oc. 
If in this elliptic region we use the conformal mapping c2 = [, + iq, = sech (v, -+ 8) 
to bring the region of interest, s < c2, 0 > 8 > - in, into the fourth quadrant of 
the c2-plane, then across OC, Cl = me2, and the continuity conditions are 

and 

It is clear under the conditions imposed that F(yl) must be real on the whole of 
the real axis. If P(cl) is complex on the real axis for 0 < c1 < m, there must be 
branch points of F at the points c1 = 0 and c1 = m. Hence for this region we may 
write 

(13) 

where A(cl) and B([J are even functions of cl which are real on the whole of the 
real axis and which are bounded as lcl;ll --f 00. The continuity conditions (12) 
lead to the equation 

6, 3 m-1) = A(f;,) +iWCl) (mT) 2 

This result, derived for real values of C2 with 0 < c2 < 1, may be continued 
analytically into the whole of the fourth quadrant of the &-plane. If the function 
B exists, expression (14) has a simple pole at  5% = 1, so that W, has a discontinuity 
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at this point. At the corresponding point cl = m, W, has no discontinuity (from 
equations (11) and (13)); the only way to avoid this inconsistency is to set B E 0. 
It follows that F(&) is a regular function bounded at  infinity and real on the real 
axis, SO that i t  can only be a real constant A .  The vanishing of B means that there 
is no normal velocity between the two subsonic regions. This section OC of the 
interface is a vortex sheet which is steadily lengthening. 

We may now write the explicit results 
A 

and 

The velocity components and the pressure, which are related to the derivatives 
of S as in equations (7), may now be found. Thus, for s < c1 in medium 1, when 
5; = sech (v, + i8) and s = c, sech ( - vl), 

and for s < c2 in medium 2 ,  when c2 = sech (v2 + i8) and s = c2 sech ( - v2) 

The constant A is a measure of the volume of fluid produced by the line source; 
by considering the steady state in the limit s -+ 0 or [-+ 0, we find that the volume 
created in each medium is n-kAc!/( 1 + k) in medium 1 and rAc:/( 1 + k) in medium 2. 
Thus the strength, for t > 0, of the source is Ac:; the fluid then produced is 
apportioned between the two media in the inverse ratio of the densities, so that 
the m a s  of fluid produced is the same in each medium. 

To determine the velocity components and the pressure in the hyperbolic 
region CDG, we use the explicit results derived from equation (16) and (17) for 
points on the boundary CD, and we use the characteristic form of the solution in 
CDG to find the complete result. Thus in CDG 8, = f(u - 8) where s/c2 = sec u;  
it follows that as&% = - f '(u - 8) .  For c2 < s < c,, 

= H(s ) ,  say. (18) 
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It follows that in CDG, 

where I as2/ae = -qS*), 

s*/c2 = sec (u - 6 )  = s/c2 cos 8 + sin e ( s 2  - c$. 

Similarly the derivative ah’@ is given by the equation 

3x2 - m*) 
as S[(S”C$) - 1 p  * 
-- 

3. A line source with delta-function strength 
As far as fluid motion is concerned the analysis of $ 2 is merely an exercise in 

setting up a quantity which has the property of dynamic similarity in a region 
with the properties given. By assuming uniform densities for two media, we are of 
course neglecting gravity, but it is not clear whether we can neglect the effect at  
the interface. Under the usual first-order approximations, given a small displace- 
ment y = q in the position of the surface, the conditions of continuity of pressure 
and of normal velocity take the form 

1 85% 1 w 2  = 3 
P1 ay P2 ay at’ 

where y is the axis normal to the interface. 
Although from these equations alone we may find only what sort of surface 

waves may exist on the interface by prescribing a form for the displacement, we 
shall eliminate the dispersive effects due to gravity by insisting that 7 be a 
function continuous in x and t, small in comparison with the quantities 

I 3 0  + Pll MP1- p2)I-l and [I)o +P21 MP1- Pz)l-l, 
where pa is the steady pressure at the interface. Then aq/at is also small. The 
assumption of an acoustic line source of infinitesimal amplitude and step 
function time-dependence in $ 2  in no way violates this assertion. 

With these remarks in mind we can now state that the results for an (acoustic) 
source of delta-function time-dependence on the interface are obtained from the 
formulae in $2 simply by differentiating with respect to time throughout. Thus 
the known results for a$/at in $ 2 represent the values of the velocity potential in 
the impulse problem. These values are 

where 
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Also 

where 

This final expression for # is valid within the hyperbolic region GCD. 

4. The supersonic source 
The results given in $2  are immediately applicable in the calculation of the 

fields which accompany a semi-infinite line source of uniform strength, which 
is moving lengthways on the interface between two fluids. This line singularity 
moves steadily with a velocity V which must be supersonic with respect to 
both media, and it lies on the z-axis. 

The flow is conical, and the variable s is now of the form s = r V / (  Vt  - x )  
for steady motion in the positive z-direction. The s- and &derivatives of the 
potential are then given by equations (17) to (20) if we replace c1 by c1 V(  V2 - 
and c2 by c2 V (  V 2  - c;)-*, and if we modify the quantity m accordingly. The 
z-derivative, that is the quantity {s/( Vt - x ) >  (aS/as), then represents either the 
velocity component parallel to the line singularity, or the potential of a super- 
sonic point source moving along the interface. 

5. The electromagnetic problem 
The results derived in the acoustic problem are applicable in the theory of 

electromagnetic pulses involved in the sudden setting-up of a current in an 
infinite line or of a charged line on the interface between two media. In  the former 
case the vector potential has only one component A, = c2S(s, O), the constant Ic is 
the ratio of the magnetic permeabilities p2/p1, and m is the ratio c2/c1. The non- 
zero field components, derived from Maxwell’s equations, are 

For the charged line we relate the quantity S to the scalar potential CD through 
the equation CD = c2S. In  this case k is the ratio of the dielectric constants E2/e1, 
and the non-zero field components are 

The results given in equations (16), (17), (19) and (20) may be used directly to 
derive the field components. 

6. Conclusion 
The assumption of dynamic similarity is used to determine the velocity 

potential and pressure field of an impulsive line source which is suddenly set up 
on the plane which separates two media of different density and sound velocity. 
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The solution for the potential may be identified with Hadamard’s elementary - 

solution of the wave equation in the homogeneous case, when 

$ = O  if r > ct. 

In  the case of two media considered in this paper, there are similar algebraic 
singularities on the shock fronts r = ct in medium 1 and r = cg t in medium 2. 

A feature of the solution is that since a Wjac is real on the section OC of the 
interface, there is no normal velocity between the two subsonic regions. This 
section of the interface is a contact discontinuity (i.e. OC is a steadily expanding 
vortex-sheet). 

The author presented these results verbally at the spring (1959) meeting of the 
U.R.S.I. in Washington, D.C. A similar method has been used independently by 
Keller & Gardner (1959) to find the solution for a line dipole. This research has 
been sponsored in part by Air Force Cambridge Research Center under 
contract AP 19(604)-4561, and in part by the Office of Naval Research and 
the David W. Taylor Model Basin under contract Nonr-562(24). 
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